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Abstract

Referring Expression Comprehension (REC) is a crucial task
in natural language processing and computer vision, aiming
to ground referents based on given expressions. Conventional
fully-supervised REC demands extensive instance-level an-
notations, which are costly and time-consuming to obtain,
thus limiting the scalability and applicability of REC mod-
els. The adoption of weakly supervised methods significantly
reduces the annotation burden, making REC more accessible
for a wider range of applications. RefCLIP(Jin et al. 2023)
defines weak supervision as an anchor text matching prob-
lem, introducing anchor-based contrastive loss, and optimiz-
ing RefCLIP with a large number of anchor text pairs, achiev-
ing impressive performance. In this model, LSTM(Hochreiter
and Schmidhuber 1997) is employed for text feature extrac-
tion, and a simple linear mapping is used for feature fusion.
We believe that utilizing more advanced language encoders
can enhance the model’s understanding of natural language
descriptions while incorporating a deep feature fusion mod-
ule facilitates better integration of image features and textual
information. Therefore, in this study, we investigate factors
that impact the REC task. Through rigorous empirical analy-
sis, we reveal that specific text encoding and feature fusion
methods significantly enhance the performance of weakly
supervised REC. This research not only advances academic
understanding of weakly supervised REC but also provides
valuable insights with practical relevance for real-world ap-
plications.

Introduction
Referring Expression Comprehension (REC) aims to locate
the target instance in an image based on a referring expres-
sion (Luo et al. 2020). REC covers the understanding and
coordination of multimodal information (text and images)
and is a crucial step toward creating more intelligent and in-
teractive human-computer interfaces. These remarkable fea-
tures have garnered increasing attention from the computer
vision community (Luo et al. 2022). However, instance-level
annotation often comes at a high cost, and is challenging to
collect professional instance-level annotations in fields such
as medicine, significantly constraining the development of
the REC task.
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To overcome this limitation, some researchers have
started to explore weakly supervised REC models. Exist-
ing weakly supervised methods usually extend two-stage ob-
ject detectors, such as Faster-RCNN (Ren et al. 2017), to
weakly supervised REC models. Specifically, they treat REC
as a region-text ranking problem, where they first extract
salient regions from images using Faster-RCNN and then
rank these regions through cross-modal matching. However,
these methods often have slower inference speeds, making
them less suitable for real-time applications.

In comparison to Faster-RCNN, one-stage detectors like
YOLOv3 (Redmon and Farhadi 2018) offer distinct advan-
tages in efficiency. Yet, the challenge lies in how to adapt
them effectively to existing weakly supervised schemes. Ex-
isting one-stage detectors (Redmon and Farhadi 2018) typ-
ically predict bounding boxes based on features from the
last few convolution layers, also known as anchor points.
Since one-stage detectors typically make multiple-scale pre-
dictions, these anchor point predictions often involve many
bounding boxes. These bounding boxes need to be asso-
ciated with textual descriptions to facilitate weakly super-
vised tasks. This process can be labor-intensive and time-
consuming.

Fortunately, the recently proposed model called RefCLIP
redefines weakly supervised REC as an anchor-text match-
ing problem, avoiding the complex post-processing in exist-
ing methods. To achieve weakly supervised learning, Ref-
CLIP introduces anchor-based contrastive loss to optimize
RefCLIP via numerous anchor-text pairs. It achieves sig-
nificant performance gains over existing weakly supervised
models, +24.87 % on RefCOCO with an inference speed 5x
faster than the former method.

However, the text given in REC tends to be more specific
and complicated, which asks for a higher text processing
ability from the model. Our model uses RefCLIP as a base-
line. By replacing the former text decoder with pre-trained
BERT, our model gets a better ability to obtain text features
and achieves better performance than RefCLIP.

Related Work
1. Referring Expression Comprehension
We used the concept of REC (Referring Expression Compre-
hension) (Luo et al. 2020) to achieve the purpose of locating



the target object in the image based on the given reference
expression. Currently, REC implementation methods can be
mainly divided into two types: two-stage detection networks
and one-stage detection networks. Among them, two-stage
detection networks (Liu et al. 2019b) propose possible ob-
ject bounding boxes in the first stage and determine the final
object detection and localization in the second stage. They
are suitable for applications that require precise localization
and detection of objects in images. Typical two-stage detec-
tion networks include Faster R-CNN (Ren et al. 2017) and
R-FCN. On the other hand, one-stage detection networks
(Luo et al. 2020) perform object detection in a single step
by directly classifying and regressing bounding boxes for
all positions in the image. They are suitable for applications
that require accelerated object detection. Typical one-stage
detection networks include YOLO (You Only Look Once)
and SSD (Single Shot MultiBox Detector). Due to the high-
speed requirements of the application in this paper, a one-
stage method, specifically YOLOv3, is adopted.

2. Weakly Supervised Referring Expression
Comprehension
Weakly supervised learning is a machine learning approach
that involves training models when the quality of labels in
the training data is low or uncertain. It is particularly ap-
plicable to tasks like Referring Expression Comprehension
(REC) with costly instance-level annotation requirements. It
allows for reducing label costs while accepting some loss in
accuracy. However, implementing weakly supervised REC
can be more challenging than fully supervised REC due to
the lack of bounding box annotations.

Most existing methods (Liu et al. 2019a; Wang et al. 2021;
Zhang et al. 2020) for weakly supervised Referring Ex-
pression Comprehension predominantly rely on two-stage
supervised REC models. During the early exploration of
one-stage models for weakly supervised REC (Zhao et al.
2018), it was found that their performance was not as good
as two-stage models. Two-stage supervised REC models
frame the REC task as a region-text ranking problem. This
task necessitates that the model effectively comprehends the
relationship between textual descriptions and image con-
tent and ranks textual descriptions or image regions based
on relevance. The primary challenge lies in providing ef-
fective supervision signals in image-text pairs. Researchers
have addressed this issue using methods such as sentence
reconstruction (Liu et al. 2019a) and contrastive learning
(Zhang et al. 2020). While these methods achieve high accu-
racy, they are computationally expensive, and Faster R-CNN
models often suffer from slower inference speeds.

Different from these approaches, the model used in this
paper is based on a one-stage network testing approach,
specifically YOLOv3. It employs an anchor-text matching
method for text matching and information retrieval.

Proposed Solution
1. Problem Definition
In the current weakly supervised setting (Liu et al. 2019a),
Referring Expression Comprehension (REC) aims to locate

the target instance within an image, denoted as I , using a
textual expression T to define its bounding box b. However,
achieving detection solely based on text expressions and im-
ages is infeasible.

In this case, existing weakly supervised solutions usu-
ally adopt a pre-trained two-stage detection network, e.g.,
Faster-RCNN (Ren et al. 2017), to provide a set of candi-
date bounding boxes B, similar to existing two-stage REC
methods (Liu et al. 2019b). Then, REC is formulated as a
region-text matching problem, defined by:

b∗ = b ∈ BargmaxΦ(T, I, b), (1)

where b∗ is the best-matched box, and Φ(·) is a cross-modal
ranking network that returns the similarities between the
candidate regions (boxes) and expression. Afterward, the
model conducts weakly supervised training based on seman-
tic reconstruction (Liu et al. 2019a) or cross-modal con-
trastive losses (Zhang et al. 2020). Although feasible, this
approach necessitates intricate post-processing steps, such
as ROI pooling for region feature extraction, resulting in a
substantial reduction in its inference speed.

To this end, we turn to the utilization of efficient one-stage
detectors such as YOLOv3 (Redmon and Farhadi 2018)in
constructing our RefCLIP. RefCLIP capitalizes on the de-
tection capabilities offered by YOLOv3. However, in prac-
tice, we simplify the REC task to an anchor-text matching
problem, i.e., which anchor is most likely to have the target
box:

a∗ = a ∈ Aargmaxϕ(T, I, a), (2)
where a∗ is the best anchor, A denotes the set of anchor
points in YOLOv3, and ϕ(·) is a simple linear ranking mod-
ule. To explain,one-stage detectors such as YOLOv3 make
predictions relying on grid features within output feature
maps, referred to as anchor points. By knowing which an-
chor is correct, we can greatly narrow down the range of
candidate boxes and finally obtain the most confident box as
the prediction.

More importantly, utilizing Eq. 2 allows us to directly em-
ploy the convolution backbone for extracting anchor features
without intricate post-processing. To accomplish weakly su-
pervised optimization, we extend this by conducting anchor-
based contrastive learning both within and outside of im-
ages.

2. Anchor Selection
The framework of RefCLIP, presented in Figure 1, follows
a similar structure to the widely adopted cross-modal con-
trastive learning model, CLIP (Radford et al. 2021). Just
like CLIP, RefCLIP aligns visual and textual features within
a shared semantic space, facilitating the learning of vision-
language correspondence across diverse multi-modal pairs.

Within RefCLIP, employing all anchors as candidates will
hinder the efficiency and quality of contrastive learning. It is
because one-stage detectors (Redmon and Farhadi 2018) are
frequently multi-scale, resulting in the generation of thou-
sands of candidate anchor points, a significant portion of
which are background or low-quality elements.

Hence, RefCLIP needs to filter out and eliminate a ma-
jority of low-value anchors, as depicted in Fig. 1. Firstly,



Figure 1: The framework of the proposed RefCLIP (left) and weakly supervised training scheme (right).

we retain solely the anchors from the final convolution fea-
ture map. To explain, in recent REC datasets (Mao et al.
2016; Nagaraja, Morariu, and Davis 2016), most objects are
relatively large and can be detected by anchors in small-
resolution feature maps. Secondly, we filter the remaining
anchors according to their confidence scores, e.g., selecting
the top 10 percent of anchors.

Following this, RefCLIP calculates the similarities be-
tween these candidate anchors and expressions in the joint
semantic space, eventually returning the best-matching an-
chor as the positive one for contrastive optimization.

3. Anchor-based Contrastive Learning
For weakly supervised learning, we introduce an anchor-
centered cross-modal contrastive learning framework.
Specifically, given an image I and an expression T , we first
use the detection network and language encoder to extract
their features, denoted as Fv ∈ Rh×w×d and ft ∈ Rd,
respectively. Then, an anchor is represented by the corre-
sponding feature in Fv, denotedasfa ∈ Rd.

Following anchor selection, we perform a linear projec-
tion of the chosen anchor fa and the text feature ft into a
shared semantic space. Their similarity is subsequently com-
puted by

sim (fa, ft) = (faWa)
T
(ftWt) (3)

where Wa and Wt are projection matrices, and sim(·) can be
regarded as the lightweight ranking module in Eq. 2.

Within REC, typically, the target instance and expression
in an image form a one-to-one match. In theory, only one
anchor serves as a positive example, while the remainder,
particularly those filtered out, act as negatives. Hence, we
establish the definition of inter and intra images contrastive
loss as follows:

Lc = − log
exp
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where f j
an

are anchors sampled from a batch and f i
a0

is the
positive one of image i. I¬(i=j∧n̸=0) is the indicator func-
tion, which is equal to 0 when i = j and n = 0. N and M
denote the number of negative anchors per image and batch
size, respectively. τ is the temperature (Hinton, Vinyals, and
Dean 2015). In terms of N , we select the negative anchors
based on their confidence scores.

Eq. 4 highlights RefCLIP’s adaptability in augmenting
negative samples. In principle, more negative samples can
better facilitate optimization. Yet, existing image-level con-
trastive learning approaches typically confine the count of
negative instances to the batch size or depend on external
repositories. Contrastingly, within our anchor-based frame-
work, the pool of negative samples can surpass the batch
size by multiple folds, significantly enhancing training effi-
ciency.

4. Network Settings

RefCLIP, depicted in Figure 1, comprises a pre-trained one-
stage detector (YOLOv3) (Redmon and Farhadi 2018), a
language encoder, and a multi-scale fusion module (Luo
et al. 2020). The language encoder consists of a bidirec-
tional GRU (Bahdanau, Cho, and Bengio 2015) followed by
a self-attention layer (Vaswani et al. 2017). Before cross-
modal matching, we utilize a multi-scale fusion module
(Luo et al. 2020)to amalgamate semantic information across
three scales.

In the inference phase, RefCLIP initially identifies the
best-matching anchor point, utilizing the detection head to
forecast bounding boxes. Given that an anchor point might
correspond to multiple boxes (Redmon and Farhadi 2018),
we select the one with the highest confidence score as the
prediction.



5. Pseudo-label based weakly supervised training
Scheme
Within this section, we introduce an innovative pseudo-
label-based training scheme designed for arbitrary REC
models, which is also the first attempt in REC. In this
scheme, RefCLIP assumes the role of a teacher, imparting
knowledge to conventional REC models through its pseudo-
labels. This transfer of information aids these models in
adapting to weakly supervised REC without necessitating
any alterations.

Given an image-text pair (I, T ), we first use RefCLIP to
generate the pseudo-label b. After that, we construct a triplet
(I, T, b) to supervise the common REC model, and the ob-
jective can be defined by

minLs (I, T, b; θs) (5)

where θs denotes the model parameters, and Ls is the loss
function, which can be the ranking loss for two-stage models
or the regression one for one-stage models.

The pseudo labels produced by RefCLIP may still contain
noise and be of inferior quality, consequently resulting in a
significant concern known as confirmation bias (Arazo et al.
2020). This concern implies that the training signal might
be excessively influenced by noisy samples, ultimately re-
stricting the performance ceiling due to accumulated errors.
Drawing on the latest research progress (Mi et al. 2022), we
implement two designs to alleviate this problem.

More specifically, we implement data augmentation tech-
niques on the input image, such as random resizing
(Krizhevsky, Sutskever, and Hinton 2017), to deter the
model from prematurely overfitting to the pseudo-labeled
data. In addition, we adopt Exponential Moving Average
(EMA) (Tarvainen and Valpola 2017) to the REC model, de-
fined by

θts ← αθt−1
s + (1− α)θts, (6)

where α is the EMA coefficient and t is the training step. As
described in Eq. 6, EMA will gradually ensemble the REC
models at different training statuses, effectively preventing
the decision boundary from being influenced by noisy sam-
ples.

Lastly, the gradient update in our training scheme is:

θts = θ̂s − γ

t−1∑
k=1

(
1− α−k+(t−1)

) ∂Ls (I, T, b; θs)

∂θks
(7)

where θ̂s denotes the initial model weights.
While resembling fully supervised training, the proposed

scheme operates without utilizing any ground-truth bound-
ing boxes in its training process, aligning with the definition
of weakly supervised REC(Liu et al. 2019a).

Experiments
1. Datasets and Metric
RefCOCO (Nagaraja, Morariu, and Davis 2016) has
142,210 referring expressions and 50,000 objects from
19,994 MSCOCO (Lin et al. 2015) images. The expres-
sions of RefCOCO are mainly about absolute spatial infor-
mation. RefCOCO+(Nagaraja, Morariu, and Davis 2016)

contains 141,564 referring expressions for 49,856 bound-
ing boxes from 19,992 MSCOCO images. The data splits
of RefCOCO+ are the same as RefCOCO. However, the
descriptions of RefCOCO+ are about relative spatial infor-
mation and appearance, e.g., color and texture. RefCOCOg
(Mao et al. 2016; Nagaraja, Morariu, and Davis 2016) has
104,560 referring expressions for 54,822 bounding boxes in
26,711 images. Compared with RefCOCO and RefCOCO+,
the expressions of RefCOCOg are longer and more com-
plex. Here, we use the Google split (Mao et al. 2016) of Re-
fCOCOg in our experiments. ReferItGame (Kazemzadeh
et al. 2014) has 19,997 images from the SAIAPR-12 dataset,
99,220 bounding boxes, and 120,072 referring expressions.
We partition the dataset into train,val, and test according to
Berkeley split. We use IoU@0.5 as the metric. If IoU be-
tween the predicted and the ground-truth box is larger than
0.5, the prediction is correct.

2. Implementation Details
We resize the input image to 416 × 416. The maximum
length of the input text is set to 15 for RefCOCO, Ref-
COCO+, and RefCOCOg and 20 for ReferItGame. For Re-
fCLIP, we use YOLOv3 (Redmon and Farhadi 2018) as the
detector to extract anchor features, which is pre-trained on
MS-COCO (Lin et al. 2015), and the images of val and test
set in the three datasets above are removed. For a fair com-
parison with (Liu et al. 2019b; Wang et al. 2021) in Refer-
ItGame, we use the YOLOv3 pre-trained on Visual Genome
(Krishna et al. 2017) as the detector of our RefCLIP. Dur-
ing training, the parameters of YOLOv3 are fixed. The di-
mension of the language encoder is set to 512. The anchor
features are projected to 512 by the multi-scale fusion. In
anchor-based contrastive learning, the dimension of linear
projection is 512, and 2 negative anchors per image are used
by default. All models are trained by Adam (Kingma and Ba
2017) optimizer with a constant learning rate of 1e-4. The
training epochs and the batch size are set to 25 and 64, re-
spectively. For the weakly supervised training scheme, we
apply random resize as the data augmentation to the input
image. The EMA coefficient is set to 0.9997. Other configu-
rations of RealGIN, SimREC, and TransVG remain the same
as their default settings.

3. Quantitative Analysis
Table 1 presents the comparative results for two crucial com-
ponents in the RefCLIP model: the choice of language en-
coder and the method of feature fusion. The comparison
focuses on the impact of these design choices on the REC
task’s performance.

Language Encoder Comparison: Initially, we observed
that the choice of language encoder plays a significant role
in the REC task’s success. The basic LSTM encoder, while
adequate, did not offer optimal results. For instance, us-
ing LSTM, the accuracy on the RefCOCO dataset was sat-
isfactory but not exceptional. In contrast, the adoption of
the BERT encoder markedly improved performance. With
BERT, there was an impressive improvement. This enhance-
ment is attributable to BERT’s superior ability to understand
the context and nuances in natural language, confirming our



hypothesis about the importance of advanced language pro-
cessing in REC.

Feature Fusion Strategies: Furthermore, we explored
the impact of different feature fusion strategies within the
RefCLIP model. Despite experimenting with two fusion
methods, namely simple linear mapping and Cross-Scale
Feature Fusion Module(CCFM), the deep feature fusion
module failed to deliver substantial enhancements over the
linear mapping approach. This limited improvement may be
attributed to several factors.

Firstly, it’s possible that the complexity introduced by the
deep feature fusion module did not align with the specific
characteristics of our REC task. The task may not inherently
require the intricate feature interactions that the deep fusion
module was designed to capture. Additionally, the dataset
used in our experiments may not have contained sufficiently
diverse and complex examples to fully leverage the capabil-
ities of the deep fusion module.

article multirow

Table 1: The ablation results for two crucial components in
the RefCLIP model

Model RefCOCO
val testA testB

+LSTM 60.36 58.58 57.13
+LSTM & CCFM 60.15 58.60 57.10

+BERT 63.20 60.02 59.23
+BERT & CCFM 63.22 60.00 59.20

Conclusion
This study has made significant strides in advancing the
field of Referring Expression Comprehension (REC) by ex-
ploring the efficacy of weakly supervised methods, specifi-
cally through the RefCLIP model. Our findings underscore
the limitations inherent in fully-supervised REC methods,
primarily due to their extensive demands for instance-level
annotations. These requirements not only escalate the cost
but also consume considerable time, thereby hampering the
scalability and practical applicability of REC models.

The introduction of weakly supervised methods marks a
pivotal shift in this landscape. By significantly reducing the
annotation burden, these methods have made REC more ac-
cessible and versatile for a broader spectrum of applications.
The RefCLIP model, as proposed by Jin et al. in 2023, ex-
emplifies this approach. By conceptualizing weak supervi-
sion as an anchor text matching problem and integrating
an anchor-based contrastive loss, RefCLIP harnesses a large
corpus of anchor text pairs, culminating in remarkable per-
formance enhancements.

A notable aspect of the RefCLIP model is its use of LSTM
(Hochreiter and Schmidhuber, 1997) for extracting text fea-
tures, complemented by a straightforward linear mapping
for feature fusion. Our research posits that the incorpora-
tion of more sophisticated language encoders could signifi-
cantly bolster the model’s proficiency in interpreting natural
language descriptions. Moreover, the integration of a deep

feature fusion module is anticipated to enhance the synergy
between image features and textual data, thereby enriching
the overall REC process.

Our empirical investigations into various factors influenc-
ing the REC task have yielded critical insights. Specifically,
we discovered that the choice of text encoding and feature
fusion methods exert a substantial impact on the perfor-
mance of weakly supervised REC systems. These findings
not only contribute to the academic discourse by enhancing
the understanding of weakly supervised REC but also hold
immense practical value. They pave the way for more re-
fined and efficient REC applications in real-world settings,
thus bridging the gap between theoretical research and prac-
tical utility.

In conclusion, this study reaffirms the transformative po-
tential of weakly supervised methods in REC. By delving
into the nuances of text encoding and feature fusion, we have
illuminated pathways for future research and application en-
hancements. Our work catalyzes further innovations in REC,
promising to expand its reach and effectiveness across vari-
ous domains.
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